China Standard High Quality 7.5KW 15KW 22KW 30KW 55KW 75KW 90KW 185KW 250KW Direct Driven Screw Air Compressor air compressor repair near me

Product Description

High Quality 7.5KW 15KW 22KW 30KW 55KW 75KW 90KW 185KW 250KW Direct Driven Screw Air Compressor

Product Description

Noise enclosure
It is designed into fully-closed mute box, in which sound-absorbing sponge are attached for effective absorption of noise,thereby making the noise 3-5dB(A) lower than that made by the compressors of the same kind.It is reasonably structured overall and very easy to maintain and repair.

Control Panel
Intelligent microcomputer-based control technology can monitor and control in all aspects the complete machine following your instructions. Remote control realizes unattended operation, and the user-friendly human-machine interface displays instructions and parameters in written form. Also, it can function to self diagnose faults,give warning and automatically regulate the capacity.

Motor
First-class motors are adopted, with the level of protection being Ip54 and insulation level being F.overall and very easy to maintain and repair.

Cooler
It is designed for low temperature difference to increase heat exchange area, and ideal to be applied to high-temperature and high-humidity operating environment.

Configuration characteristics
1. A precisely-made central bracket is used to keep the motor aligned permanently with the bare compressor
2. A highly resilient coupling is adopted to make the compressor operate smoothly, and the elastomer is long in useful life
3. The exhaust pipe adopts double-layer bellows, and the oil circuit adopts specially-made temperature-resistant 125º C high-pressure hose
4. For the extremely high temperature condition in some districts, the large-area plate heat exchange and high-efficiency water chiller are used
5. High-quality shaft coupling elastic body can buffer and compensate for the imbalanced moment of operation.

Product Parameters

 

Model

Air flow

pressure

Motor power

Caliber

Noise

Cooling air volume

Cooling water

m ³/min

MPa

kW

dB(A)

m ³/min

L/min

LA-7GA

1.35

0.7

7.5

G1/2

62±2

32.5

 

1.25

0.8

1.01

1

0.9

1.25

LA-11GA

1.8

0.7

11

G3/4

63±2

50

1.78

0.8

1.55

1

1.3

1.25

LA-15GA

2.5

0.7

15

G3/4

63±2

50

2.4

0.8

2.1

1

1.8

1.25

LA-18GA

3.1

0.7

18.5

G1

64±2

100

3

0.8

2.7

1

2.3

1.25

LA-22GA/W

3.8

0.7

22

G1

64±2

110

14.5

3.7

0.8

3.2

1

2.8

1.25

LA-30GA/W

5.4

0.7

30

G1

65±2

145

20

5.25

0.8

4.5

1

3.9

1.25

LA-37GA/W

6.6

0.7

37

G1 ½

65±2

145

25

6.6

0.8

5.9

1

4.8

1.25

LA-45GA/W

8.4

0.7

45

G1 ½

66±2

185

30

8

0.8

7.4

1

6.4

1.25

LA-55GA/W

10.8

0.7

55

G2

68±2

220

39.9

10

0.8

9.1

1

8

1.25

LA-75GA/W

13.8

0.7

75

G2

72±2

250

51

13

0.8

11.8

1

10.3

1.25

LA-90GA/W

17.1

0.7

90

G2

72±2

270

61

17

0.8

15.2

1

12.5

1.25

LA-110GA/W

21.2

0.7

110

G2 1/2

75±2

420

79

20

0.8

17.1

1

15.4

1.25

LA-132GA/W

25

0.7

132

G2 1/2

75±2

460

91

24.3

0.8

21

1

17.5

1.25

LA-160GA/W

30.5

0.7

160

G2 1/2

75±2

510

105

29.2

0.8

26.9

1

22.5

1.25

LA-185GA/W

32.9

0.7

185

G2 1/2

75±2

510

123

31.9

0.8

29.1

1

25.5

1.25

LA-220GA/W

37

0.7

220

DN80

75±2

710

144

36.3

0.8

31.63

1

28.55

1.25

LA-250GA/W

45.8

0.7

250

DN80

75±2

800

163

44

0.8

39

1

35.5

1.25

Product Picture

Company Profile

FAQ

1: What kind terms of payment can be accepted?
A: For terms of payment, L/C, T/T, D/A, D/P, Western Union (can be) could accepted.
2: What certificates are available in Machinery?
A: For the certificate, we have CE, ISO, Gost, EPA(USA)CCC.
3: What about the delivery time?
A: 7-30 days after receiving the deposit.
4: What about the warranty time?
A: 12 months after shipment or 2000 working hours, whichever occuts first.
5. What about the Minimum Order Quantity?
A: The MOQ is 1 pcs.

After-sales Service: Overseas service center available
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: AC Power
Cylinder Position: Vertical

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Standard High Quality 7.5KW 15KW 22KW 30KW 55KW 75KW 90KW 185KW 250KW Direct Driven Screw Air Compressor   air compressor repair near meChina Standard High Quality 7.5KW 15KW 22KW 30KW 55KW 75KW 90KW 185KW 250KW Direct Driven Screw Air Compressor   air compressor repair near me
editor by CX 2023-10-21